Category

Business

Megjósoljuk, hogy megjósolják – Facebook Prophet

By | Big Data News, Business, Data Science, Data Visualization | No Comments

Az elmúlt hetekben alapjaiban forgatta fel társadalmunkat és világról – különösen annak biztonságáról – alkotott képünket a Kínából indult koronavírus-járvány, és persze a globális felmelegedés témája is folyamatosan foglalkoztatja a közvéleményt.

A 21. században egyre nagyobb jelentőséggel bírnak és egyre pontosabbak a különböző prognózisok. Vajon az ezek mögött álló előrejelző algoritmusok tényleg alkalmasak arra, hogy megbízható információkkal szolgáljanak például az időjárásról, a közúti forgalom, esetleg a részvényárfolyamok alakulásáról, vagy akár a járványok terjedéséről? Erre is választ keresünk a Facebook Prophet gyakorlati bemutatásán keresztül.

Nem kérdés, hogy mindennapi életünket egyre jobban befolyásolják a különböző előrejelző algoritmusok. Elég, ha csak az időjárás-előrejelzésre, a forgalmi prognózisokra vagy a részvényárfolyamok előrejelzésére gondolunk. „Vajon milyen idő lesz holnap? Ha holnap arra indulok kocsival, vajon dugóba kerülök? Vajon most érdemes beszállni ebbe az üzletbe?” – annyira gyakorlatias kérdések ezek, hogy akár az elmúlt fél órában is hallhattuk volna valakitől, vagy akár mi magunk is feltehettük volna bármelyiket.

Még ha nem is tudatosul bennünk, számos előrejelzést „futtatunk” magunk is: korán indulunk, hogy legyen hely a munkahelyi parkolóban, hogy ne kelljen sorba állni a menzán; esetleg megpróbáljuk egy korai vagy éppen késői hazaindulással a dugót elkerülni; és így tovább. Mindez tapasztalataink alapján az esetek többségében működik is, ha pedig tévedünk, olyan nagy kockázattal jellemzően nem jár.

Amikor az adatok jóslásának következménye van

Az üzleti életben az előrejelzések ennél sokkal racionálisabban működnek, és persze nagyobb téttel is bírnak. A forgalmi adatok előrejelzése például egy rendszerüzemeltetéssel foglalkozó vállalatnál kulcsfontosságú. Még ha tudnák is úgy méretezi a rendszereiket, hogy azok az elképzelhető legnagyobb forgalmat is elbírják, nem lenne költséghatékony azt mindig a maximális kapacitáson üzemeltetni. Ehelyett inkább a korábbi minták alapján próbálják megbecsülni a várható forgalmat, és az IT-infrastruktúrát az előrejelzéshez méretezni. Szerencsére az elasztikus skálázhatóság ma már nem probléma.

Egy call centernél sem mindegy, hogy mikor hány operátor dolgozik. Az sem volt mindegy, hogy a 2000-es évek derekán a telekommunikációs vállalatok mekkorának becsülték az év végi SMS-forgalmat, hiszen köztudott volt, hogy akkortájt az rövid szöveges üzenetek nagy része karácsonyra és szilveszterre koncentrálódott.

Az előrejelzés-automatizálás előretörése minden területen törvényszerű, így ma már az interneten is számos algoritmus elérhető. Egyikre sem tekinthetünk természetesen mindent tudó varázsgömbként, de van egy-két említésre méltó közöttük. Ebben a bejegyzésben a Facebook által publikált generikus prediktív elemzési megoldást vizsgáljuk: kipróbáltuk a Mark Zuckerberg és fejlesztői csapata „prófétáját”.

A Facebook Prophet egy Python és R nyelven használható előrejelző eszköz, melyet Facebook data science csapata fejlesztette ki a Stan fejlesztőeszköz használatával. Szükséges bemenete egy timestamp típusú attribútum és egy hozzá tartozó numerikus érték. Ebből adódóan ez az eszköz azokra az esetekre hasznos,  mikor az adatnak szezonális tartalma van. Tapasztalataink alapján leginkább napi bontású, legalább egy évet tartalmazó adatok elemzésére alkalmas. Az implementációja követi az sklearn fit és predict függvények struktúráját.

A Prophet paraméterezhetősége

A Prophet erőssége a paraméterezhetőség, a lehetőség olyan információk átadására a modellnek, amelyek alapvetően az adatból nem következnek, de szeretnénk azokat figyelembe venni egy megbízhatóbb előrejelzés létrehozásakor.

  • Saturating Forecasts: minimum(floor), maximum(cap) érték meghatározása a perdiktálás keretek között tartása érdekében. Valamely konstans keretérték megadása, ami az adott előrejelzés logikája alapján szükséges lehet.
  • Trend Changepoints: az emberi ismeretekkel előre sejthető, jövőbeli trendben számíthatóan bekövetkező váltópontok számának meghatározása (n_changepoints), trend flexibilitásának beállítása (changepoint_prior_scale) vagy a váltópontok helyének meghatározása (changepoints). Ilyen lehet például a labdarúgó-világbajnokság fináléja.
  • Seasonality and Holiday Effects: szezonalitás meghatározása (add_seasonality), alapvetően heti és éves intervallumokkal számol a modell. Ünnepek meghatározása (holidays). Abban az esetben, ha szeretnénk meghatározni ilyen ünnepi dátumokat, akkor azt a múltra és jövőre vonatkozóan is meg kell tenni, különben nem veszi figyelembe a modell. A különböző ünnepek között meghatározható prioritás (prior_scale) és az ünnepi hatások csillapítása is lehetséges (holidays_prior_scale).
  • Outliers: Az outlier adatok kezelésére azt javasolják, hogy egyszerűen csak cseréljük le nem létező adatra, mert a Prophet jól kezeli a hiányzó adatokat.
  • Non-Daily Data: Abban az esetben, ha nem éves adatokra tanítjuk be a modellünket, akkor az előre jelzésre is olyan intervallumot használjunk, mint amit a tanító halmazban.

Időjárás-előrejelzés

A Prophet eszköztárának kipróbálására Budapest egy kerületének a hőmérsékleti adatait használtuk fel, mint erősen szezonális adatokat. Az adathalmazunk 1901. 01. 01-tól 2010. 12. 31-ig tartalmaz hőmérséklet adatokat napi bontásban. Az utolsó 2010-es évet vettük ki a tanító halmazból és használtuk fel az előrejelzés visszamérésére.

# Eredeti adathalmaz oszlopainak átnevezése
df = df.rename(columns={'#datum': 'ds', 'd_ta': 'y'})
data = df[['ds', 'y']]
# Dátum formátum megváltoztatása
training = data[data['ds']<'2010-01-01'] test = data[data['ds']>='2010-01-01']
# Modell létrehozásda és tanítása
m = Prophet(changepoint_prior_scale=0.5)
m.fit(training)
# Jövőbeli dátum intervallum létrehozása
future = m.make_future_dataframe(periods=365)
forecast = m.predict(future)
# Vizualizáció
plt.plot( forecast_2010['ds'], forecast_2010['yhat']
         ,forecast_2010['ds'], forecast_2010['yhat_lower']
         ,forecast_2010['ds'],forecast_2010['yhat_upper']
         ,forecast_2010['ds'],test_2010['y'] )
plt.show()

 

Időjárás 2010A fenti ábrán a 2010-es év valós időjárása piros vonallal látható. A Prophet által illesztett előrejelzés a kék vonal és a hozzá tartozó narancs és zöld színnel ábrázolt y_lower és y_upper, felső és alsó határérték.

 

Decemberre illesztett görbe:


forecast_december = forecast.tail(31)

test_december = test.tail(31)

plt.plot( forecast_december['ds'], forecast_december['yhat']

         ,forecast_december['ds'], forecast_december['yhat_lower']

         ,forecast_december['ds'],forecast_december['yhat_upper']

         ,forecast_december['ds'],test_december['y'] )

Időjárás 2010 december

Az decemberre vonatkozó előrejelzés megmutatta, hogy kisebb intervallumok kiemelése esetén sokkal nagyobb arányban esik a prediktált felső és alsó határértékeken is kívül a valós hőmérséklet. Mint láttuk, az éves előrejelzésnél lévő körülbelüli +/– 5 fokos felső és alsó határon belülre kerülnek az akkori valós hőmérsékleti adatok túlnyomó többsége.

Októberre illesztett görbe:


forecast_oct= forecast[forecast['ds']>='2010-10-01']

forecast_oct = forecast_oct[forecast_oct['ds']='2010-10-01']

test_oct = test_oct[test_oct['ds']<'2010-11-01']

plt.plot( forecast_oct['ds'], forecast_oct['yhat']

         ,forecast_oct['ds'], forecast_oct['yhat_lower']

         ,forecast_oct['ds'],forecast_oct['yhat_upper']

         ,forecast_oct['ds'],test_oct['y'] )

plt.show()

Időjárás 2010 október

Az októberi adatok vizsgálatakor látható, hogy egy hőmérsékletben kevésbé ingadozó hónap esetén meglehetőségen pontos előrejelzést kapunk a modelltől. Ebben az esetben például a prediktált és alsó határérték közé esik – kevés kivétellel – az összes valós hőmérsékleti érték.

Prophet a globális felmelegedésről

Érdekességképpen kipróbáltuk, milyen következtetést von le a jövő időjárásra vonatkozóan a Prophet. Megnéztük, milyen előrejelzést ad száz év hőmérsékletadatait figyelembe véve a 2039-es évre vonatkozóan.


future_forecast = forecast[forecast['ds']>='2039-01-01']

future_forecast.head()

future_forecast.tail()

test_2010_cut = test_2010[test_2010['ds']<='2010-12-24']

future_forecast.tail()

test_2010_cut.tail()

plt.plot( future_forecast['ds'], future_forecast['yhat']

         ,future_forecast['ds'],test_2010_cut['y'] )

plt.show()

Időjárás 2039 előrejelzés

Ebben az esetben a teljes adathalmazt felhasználtuk a tanításra  1901.01.01-től 2010.12.31-ig és a következő 30 évre illesztettünk egy görbét a Facebook Prophet segítségével. A kékkel látható a 2039-es évre prediktált görbe és sárgával az adathalmazunk utolsó 2010-es évének hőmérséklete. Alapozva az elmúlt 100 év hőmérsékleti trendjére, szinte az év minden napján jó pár fokkal magasabb hőmérséklet várható.

A Facebook Prophet alapvetően egy újabb nem-lineáris regresszióval dolgozó előrejelző eszköz, ami specifikus esetekben, leginkább a benne implementált paraméterezhetőségével tud hasznos segítséget adni.

via facebook.github.io/prophet/

 

Tekintsd meg a legfrissebb adatokkal kapcsolatos előrejelzéseinket:
https://datandroll.hu/2020/02/12/adatelemzes-trend-bizni-az-adatokban/

https://datandroll.hu/2020/01/29/2020-az-adatok-eve-lesz/

Nézz körbe a Big Data szolgáltatásaink között:

https://thebigdataplatform.hu/big-data-uzleti-megoldasok/

Ha érdekel a cégünk, csapatunk, esetleg csatlakoznál, látogass el a főoldalunkra:

https://united-consult.hu/

 

 

Trendinek lenni = bízni az adatokban

By | Big Data News, Business, Data Science, Machine Learning, Tech Trends | No Comments

Az esetek többségében ismeretlen területre lép az a cégvezető, aki az adatelemzés és -vizualizációt készül integrálni a vállalkozása üzleti folyamataiba. Ahogyan azonban szakértő segítséggel – a számára szükséges mértékben – egyre jobban átlátja a rendszert, és lépésről lépésre tisztul a kép a végeredményt illetően is, úgy egyre nő a bizalom, az ügyfél pedig minden tekintetben partnerré válik.

Természetesen hosszú egy megbízás útja, amíg a csapat felállításától eljutunk a felhasználók betanításáig, illetve az új rendszer élesítéséig. Kollégáink tapasztalatai szerint – közép- és nagyvállalati környezetben – átlagosan több mint fél évet vesz igénybe, mire az előkészítésből, az üzleti megértésből, a fejlesztésből, a tesztelésből, majd az átadás/átvétellel záruló üzembe állításig eljut egy projekt. Ahogyan látszik: miként a feladat, úgy az ügyfél döntése is igen komoly, hiszen a vállalkozás mindennapjaiba, üzleti folyamataiba drasztikus változásokat hoz egy ilyen rendszer.

Miért lehet bizonytalan az ügyfél?

Fejlesztőként érdemes tisztában lenni azzal, hogy az ügyfél esetleges bizonytalansága hátterében több tényező is állhat. Az ML (machine learning) modellek egyelőre viszonylag ismeretlen terepet jelentenek a hagyományos üzleti szféra számára – különösen igaz ez a KKV szektorra –; a meglévő folyamatba egy, az üzlet számára kevésbé kontrollálható elemet engednek be; szükségessé válik a megszokott működési folyamatok átalakítása, az adatelemzés beillesztése az operatív döntéshozatalba; és persze kritikus pont az is, hogy a fejlesztés érdekében külső szakértőkkel kell megosztani az üzleti információkat.

Munkatársunk, Fodor Szabolcs szerint az üzleti szféra jövőjét mindezek ellenére egyértelműen az adatvezérelt döntéshozatal jelenti, minden jel ebbe az irányba mutat. „Egyfajta hype is övezi az adatvezérelt döntéshozatalt, a BigData vagy AI megoldásokat, ami sok vezetőnek, cégtulajnak felkelti az érdeklődését, azonban a valóság és a hype között még nagy a szakadék. De ez a folyamat öngerjesztő, hiszen ha egy szektorban egy vállalat piaci előnyhöz jut egy adatvezérelt megoldással, a versenytársak lépéskényszerbe kerülnek, hiszen hosszú távon aki ebből kimarad, az lemarad” – fogalmazott kollégánk.

Széles körű felhasználás

Az adatelemzés és -vizualizáció az üzleti élet minden szegmensében hatékonyan támogatja a menedzsment munkáját, a vállalati döntéshozatalt. Zsolt és Szabolcs a BI Fórumon megtartott előadásban kitértek arra is, hogy a technológia olyan területeken is sikerrel bevethető, mint például az árkalkuláció, a termékajánlás, az ügyfelek mikroszegmentációja, a Customer Lifetime Value Prediction vagy éppen az üzlethelyiség ideális helymeghatározása.

Szabolcs ezzel kapcsolatos tapasztalatairól is beszámolt. Hangsúlyozta, mindig az adott iparág igényeitől függ, hogy a technológia mely funkcióit, lehetőségeit, előnyeit használják ki szívesebben és nagyobb bizalommal a cégek. „Egy pénzintézet esetén elsősorban az ügyfél scoring rendszerek a legfontosabbak, amellyel az ügyfelek hitelképességét vizsgálják. Egy gyártóüzemben ez nyilván nem használható eszköz, ott első sorban a predictive maintenance-nek van a legnagyobb szerepe, ami az üzem eszközeinek hatékony karbantartását, a karbantartási költségek leszorítását támogatja. Egy termékajánlási megoldás pedig főként az online termékértékesítésben érdekelt cégeknek lehet fontos, ahol széles termékkörből kell kiszolgálni az ügyfelet az egyedi igényei alapján” – osztotta meg kollégánk.

Ha érdekel még milyen újdonságot tartogat 2020 az adatok terén, olvasd el az alábbi cikkünket is:
https://datandroll.hu/2020/01/29/2020-az-adatok-eve-lesz/

Vagy tekintsd meg cégünk más témában megosztott tartalmait:
https://united-consult.hu/category/cikkek-rolunk-es-masrol/

 

2020 az adatok éve lesz

By | Big Data News, Business, Data Science, Data Visualization | No Comments

Az idei igazán különleges év lesz. A számmisztikával foglalkozó numerológusok szerint 2020-ban ugyanis az anyagiakkal összefüggő energiák uralják a mindennapjainkat, az évszámban szereplő két nulla azonban nehézségeket, komoly kihívásokat jelent majd. Mi magunk is izgalmas esztendőre számítunk, de az efféle okkult tanok helyett továbbra is a tudományos alapokon nyugvó adatelemzés segítségével tekintünk a jövőbe.

Mi már a tavalyi esztendőt is ennek szellemében zártuk, 2019 év végén kollégáink ugyanis előadóként vettek részt a Budapest BI Fórumon, mely a legnagyobb magyar, analitikával foglalkozó, független szakmai rendezvény. Az eseményen egyebek mellett szó volt a BI- és analitikai trendekről, az adatvizualizációról, a mesterséges intelligenciáról, az érdeklődők konkrét esettanulmányokat is megismerhettek az üzleti élet több területéről, Borbély Zsolt és Fodor Szabolcs kollégáink pedig a kiskereskedelemben használatos adatalapú optimalizációról tartottak előadást.

Még tartanak az ismeretlentől

Bevezetésként körüljárták a szakmai berkekben sokakat foglalkoztató kérdést, hogy az adatalapú döntéshozatal vajon csak „win-win” szituációkat eredményezhet-e. Kollégáink úgy vélik, hogy az emberi tényezőktől független folyamatok, valamint az azok eredményeképpen megszülető vagy éppen az azok hátterében álló objektív mérőszámok kétségtelenül pozitív megítélés alá esnek; ugyanakkor a titokzatos „black-box” technológia jelenlétét és a döntések feletti kontroll csökkenésének érzetét negatívan élik meg a cégvezetők és döntéshozók. 

A bizalom azonban jelentősen erősíthető, ha jól előkészített, szakmailag kifogástalanul kivitelezett projekteket adunk át a megrendelőknek, illetve a potenciális ügyfelek kizárólag ilyeneket látnak a referenciáink között. Ehhez azonban feltétlenül szükséges – mondhatni: a sikeres projekt kulcsa –, hogy az ügyféllel közösen helyesen fogalmazzuk meg az üzleti problémát, melyre megoldást keresünk; hogy megbízható és széles körű adatforrásokkal rendelkezzünk; illetve, hogy nyitottságot tapasztaljunk az ügyfél részéről is.

Szabolcs ezzel kapcsolatban úgy vélekedik: „Ma Magyarországon az adatgyűjtés már kellő fókuszban van, és azon KKV-k, amelyek erre hangsúlyt fektetnek, többnyire megfelelő adatforrásokkal is rendelkeznek. Az adatok közvetlenül az üzleti döntéshozatalban, termékfejlesztésben való felhasználásában azonban van még teendő. Itt a nyitottság, az ismeretlentől való félelem, de egyes esetekben az ellenérdekeltség is gátat szab az adatok felhasználásának. Ezen edukációval, pilot projektekkel lehet a legkönnyebben segíteni.”

Komplex szolgáltatásoké a jövő

Ha a nyitottság és a bizalom megvan, az ügyfél csak jól járhat az adatelemzéssel és az adatalapú döntéshozatallal. Kollégáink szerint ugyanis az adatelemzés alapja – némileg leegyszerűsítve –, hogy az üzleti kérdést az adatok nyelvére fordítjuk. Mindez lényegében azt jelenti, hogy az emberi vagy üzleti logika diktálta intuíciókat a meglévő adatokkal támasztjuk alá vagy cáfoljuk meg indokolt esetben; az elvárások alapján felépítjük a modellt; összevetjük a tényeket és az elvárásokat; végezetül pedig forintosítjuk az eredményt.

Egyszerűnek tűnik, a háttérben azonban idő- és energiaigényes feladatok állnak. Kollégáink szerint egy-egy projekt esetében a munka 30%-át az üzleti megértés, 50%-át az adatgyűjtés és előkészítés, adja, és csupán 20%-ot tesz ki maga a modellfejlesztés, mely önmagában is igen komoly és felelősségteljes szakmai kihívás. Ide tartozik ugyanis a Feature Engineering-gel, az ML tanítással és a modell teszteléssel kapcsolatos összes feladat, mely a jövőbeni, működő rendszer motorjául szolgál.

Zsolt és Szabolcs előadásában szó volt arról is, hogy míg sok piaci szereplő csak bizonyos részfeladatokat vállal az előbbiek közül, addig a United Consult komplex megoldásokat kínál az ügyfeleknek. Ezek alapját képezi az imént részletezett adatbányászat és -elemzés, majd a modellfejlesztés. Ezeket követően a modell rendszerbe állítása és a rendszeres modellpredikció vesz még részt a folyamatban. A projekt csúcsa a felhasználói dashboard kialakítása és maga az adatvizualizáció.

Utóbbival kapcsolatban Szabolcs úgy fogalmazott: „Maga az adatvizualizáció lehet egy adatalapú projekt végterméke, ebben az esetben a döntéshozatal közvetlen támogatásában, a működés átláthatóbb áttekintésében van szerepe. De természetesen nem szükséges végterméke az adatvizualizáció egy adatalapú projektnek, de mindenképp támogató szerepe van az adatok megértésében.” Végezetül tehát, a bevezetőben említett számmisztikára visszatérve: 2020 valóban különleges évnek ígérkezik, és ahhoz sem fér kétség, hogy a számok valóban megmutathatják a jövőt, akár üzleti értelemben is. Mi, a United Consultnál azonban abban hiszünk, hogy terveinket nem alapozhatjuk az aktuális csillagállásra. A bigdata-technológiában rejlő lehetőségeket – megfelelő szakértelemmel – azonban bárki a saját javára fordíthatja.

További adatokkal kapcsolatos bejegyzéseinket itt találod:
https://datandroll.hu/

Itt pedig cégünk más témában megosztott tartalmait tekintheted meg:
https://united-consult.hu/category/cikkek-rolunk-es-masrol/