Category

Big Data News

Trendinek lenni = bízni az adatokban

By | Big Data News, Business, Data Science, Machine Learning, Tech Trends | No Comments

Az esetek többségében ismeretlen területre lép az a cégvezető, aki az adatelemzés és -vizualizációt készül integrálni a vállalkozása üzleti folyamataiba. Ahogyan azonban szakértő segítséggel – a számára szükséges mértékben – egyre jobban átlátja a rendszert, és lépésről lépésre tisztul a kép a végeredményt illetően is, úgy egyre nő a bizalom, az ügyfél pedig minden tekintetben partnerré válik.

Természetesen hosszú egy megbízás útja, amíg a csapat felállításától eljutunk a felhasználók betanításáig, illetve az új rendszer élesítéséig. Kollégáink tapasztalatai szerint – közép- és nagyvállalati környezetben – átlagosan több mint fél évet vesz igénybe, mire az előkészítésből, az üzleti megértésből, a fejlesztésből, a tesztelésből, majd az átadás/átvétellel záruló üzembe állításig eljut egy projekt. Ahogyan látszik: miként a feladat, úgy az ügyfél döntése is igen komoly, hiszen a vállalkozás mindennapjaiba, üzleti folyamataiba drasztikus változásokat hoz egy ilyen rendszer.

Miért lehet bizonytalan az ügyfél?

Fejlesztőként érdemes tisztában lenni azzal, hogy az ügyfél esetleges bizonytalansága hátterében több tényező is állhat. Az ML (machine learning) modellek egyelőre viszonylag ismeretlen terepet jelentenek a hagyományos üzleti szféra számára – különösen igaz ez a KKV szektorra –; a meglévő folyamatba egy, az üzlet számára kevésbé kontrollálható elemet engednek be; szükségessé válik a megszokott működési folyamatok átalakítása, az adatelemzés beillesztése az operatív döntéshozatalba; és persze kritikus pont az is, hogy a fejlesztés érdekében külső szakértőkkel kell megosztani az üzleti információkat.

Munkatársunk, Fodor Szabolcs szerint az üzleti szféra jövőjét mindezek ellenére egyértelműen az adatvezérelt döntéshozatal jelenti, minden jel ebbe az irányba mutat. „Egyfajta hype is övezi az adatvezérelt döntéshozatalt, a BigData vagy AI megoldásokat, ami sok vezetőnek, cégtulajnak felkelti az érdeklődését, azonban a valóság és a hype között még nagy a szakadék. De ez a folyamat öngerjesztő, hiszen ha egy szektorban egy vállalat piaci előnyhöz jut egy adatvezérelt megoldással, a versenytársak lépéskényszerbe kerülnek, hiszen hosszú távon aki ebből kimarad, az lemarad” – fogalmazott kollégánk.

Széles körű felhasználás

Az adatelemzés és -vizualizáció az üzleti élet minden szegmensében hatékonyan támogatja a menedzsment munkáját, a vállalati döntéshozatalt. Zsolt és Szabolcs a BI Fórumon megtartott előadásban kitértek arra is, hogy a technológia olyan területeken is sikerrel bevethető, mint például az árkalkuláció, a termékajánlás, az ügyfelek mikroszegmentációja, a Customer Lifetime Value Prediction vagy éppen az üzlethelyiség ideális helymeghatározása.

Szabolcs ezzel kapcsolatos tapasztalatairól is beszámolt. Hangsúlyozta, mindig az adott iparág igényeitől függ, hogy a technológia mely funkcióit, lehetőségeit, előnyeit használják ki szívesebben és nagyobb bizalommal a cégek. „Egy pénzintézet esetén elsősorban az ügyfél scoring rendszerek a legfontosabbak, amellyel az ügyfelek hitelképességét vizsgálják. Egy gyártóüzemben ez nyilván nem használható eszköz, ott első sorban a predictive maintenance-nek van a legnagyobb szerepe, ami az üzem eszközeinek hatékony karbantartását, a karbantartási költségek leszorítását támogatja. Egy termékajánlási megoldás pedig főként az online termékértékesítésben érdekelt cégeknek lehet fontos, ahol széles termékkörből kell kiszolgálni az ügyfelet az egyedi igényei alapján” – osztotta meg kollégánk.

2020 az adatok éve lesz

By | Big Data News, Business, Data Science, Data Visualization | No Comments

Az idei igazán különleges év lesz. A számmisztikával foglalkozó numerológusok szerint 2020-ban ugyanis az anyagiakkal összefüggő energiák uralják a mindennapjainkat, az évszámban szereplő két nulla azonban nehézségeket, komoly kihívásokat jelent majd. Mi magunk is izgalmas esztendőre számítunk, de az efféle okkult tanok helyett továbbra is a tudományos alapokon nyugvó adatelemzés segítségével tekintünk a jövőbe.

Mi már a tavalyi esztendőt is ennek szellemében zártuk, 2019 év végén kollégáink ugyanis előadóként vettek részt a Budapest BI Fórumon, mely a legnagyobb magyar, analitikával foglalkozó, független szakmai rendezvény. Az eseményen egyebek mellett szó volt a BI- és analitikai trendekről, az adatvizualizációról, a mesterséges intelligenciáról, az érdeklődők konkrét esettanulmányokat is megismerhettek az üzleti élet több területéről, Borbély Zsolt és Fodor Szabolcs kollégáink pedig a kiskereskedelemben használatos adatalapú optimalizációról tartottak előadást.

Még tartanak az ismeretlentől

Bevezetésként körüljárták a szakmai berkekben sokakat foglalkoztató kérdést, hogy az adatalapú döntéshozatal vajon csak „win-win” szituációkat eredményezhet-e. Kollégáink úgy vélik, hogy az emberi tényezőktől független folyamatok, valamint az azok eredményeképpen megszülető vagy éppen az azok hátterében álló objektív mérőszámok kétségtelenül pozitív megítélés alá esnek, ugyanakkor a titokzatos „black box” technológia jelenlétét és a döntések feletti kontroll csökkenésének érzetét negatívan élik meg a cégvezetők és döntéshozók. 

A bizalom azonban jelentősen erősíthető, ha jól előkészített, szakmailag kifogástalanul kivitelezett projekteket adunk át a megrendelőknek, illetve a potenciális ügyfelek kizárólag ilyeneket látnak a referenciáink között. Ehhez azonban feltétlenül szükséges – mondhatni: a sikeres projekt kulcsa –, hogy az ügyféllel közösen helyesen fogalmazzuk meg az üzleti problémát, melyre megoldást keresünk; hogy megbízható és széles körű adatforrásokkal rendelkezzünk; illetve, hogy nyitottságot tapasztaljunk az ügyfél részéről is.

Szabolcs ezzel kapcsolatban úgy vélekedik: „Ma Magyarországon az adatgyűjtés már kellő fókuszban van, és azon KKV-k, amelyek erre hangsúlyt fektetnek, többnyire megfelelő adatforrásokkal is rendelkeznek. Az adatok közvetlenül az üzleti döntéshozatalban, termékfejlesztésben való felhasználásában azonban van még teendő. Itt a nyitottság, az ismeretlentől való félelem, de egyes esetekben az ellenérdekeltség is gátat szab az adatok felhasználásának. Ezen edukációval, pilot projektekkel lehet a legkönnyebben segíteni.”

Komplex szolgáltatásoké a jövő

Ha a nyitottság és a bizalom megvan, az ügyfél csak jól járhat az adatelemzéssel és az adatalapú döntéshozatallal. Kollégáink szerint ugyanis az adatelemzés alapja – némileg leegyszerűsítve –, hogy az üzleti kérdést az adatok nyelvére fordítjuk. Mindez lényegében azt jelenti, hogy az emberi vagy üzleti logika diktálta intuíciókat a meglévő adatokkal támasztjuk alá vagy cáfoljuk meg indokolt esetben; az elvárások alapján felépítjük a modellt; összevetjük a tényeket és az elvárásokat; végezetül pedig forintosítjuk az eredményt.

Egyszerűnek tűnik, a háttérben azonban idő- és energiaigényes feladatok állnak. Kollégáink szerint egy-egy projekt esetében a munka 30%-át az üzleti megértés, 50%-át az adatgyűjtés és előkészítés, adja, és csupán 20%-ot tesz ki maga a modellfejlesztés, mely önmagában is igen komoly és felelősségteljes szakmai kihívás. Ide tartozik ugyanis a Feature Engineering-gel, az ML tanítással és a modell teszteléssel kapcsolatos összes feladat, mely a jövőbeni, működő rendszer motorjául szolgál.

Zsolt és Szabolcs előadásában szó volt arról is, hogy míg sok piaci szereplő csak bizonyos részfeladatokat vállal az előbbiek közül, addig a United Consult komplex megoldásokat kínál az ügyfeleknek. Ezek alapja az imént részletezett adatbányászat és -elemzés, majd a modellfejlesztés, melyeket a modell rendszerbe állítása és a rendszeres modellpredikció követ a folyamatban. A projekt csúcsa a felhasználói dashboard kialakítása és maga az adatvizualizáció.

Utóbbival kapcsolatban Szabolcs úgy fogalmazott: „Maga az adatvizualizáció lehet egy adatalapú projekt végterméke, ebben az esetben a döntéshozatal közvetlen támogatásában, a működés átláthatóbb áttekintésében van szerepe. De természetesen nem szükséges végterméke az adatvizualizáció egy adatalapú projektnek, de mindenképp támogató szerepe van az adatok megértésében.” Végezetül tehát, a bevezetőben említett számmisztikára visszatérve: 2020 valóban különleges évnek ígérkezik, és ahhoz sem fér kétség, hogy a számok valóban megmutathatják a jövőt, akár üzleti értelemben is. Mi, a United Consultnál azonban abban hiszünk, hogy terveinket nem alapozhatjuk az aktuális csillagállásra, a bigdata-technológiában rejlő lehetőségeket – megfelelő szakértelemmel – azonban bárki a saját javára fordíthatja.

Cloudera 5.15 újítások

By | Big Data News, Cloudera | No Comments

Számos újdonsággal jelentkezik a Cloudera 5.15-ös verziója. A lista hosszú, úgyhogy ingujjakat felkötni és lássunk is neki mit rejt a legújabb release!

Gépi tanulás

A Cloudera Data Science Workbench (CDSW) alig több, mint egy éve debütált a Cloudera portfólióban nem sokkal a Sense Platform felvásárlása után. Azóta ez a negyedik CDSW edition a sorban. Aki nem ismerné, ez egy ” fast, easy, and secure self-service data science for the enterprise”. Vagyis egy olyan eszköz, amellyel a data scientistek python és R notebookok írásával könnyedén ki tudják használni a hadoop clusterben rejlő tárolási és feldolgozási kapacitást az adatok masszírozására, modellek betanítására. Az adminisztrátorok által meghatározott virtuális gépeken, konténereket tudnak a felhasználók indítani és scriptjeiket azon tudják futtatni. Így a saját gépük kapacitása helyett a cluster kapacitásával “játszadozhatnak”. Mindezt úgy, hogy a konténeren belül adminok, így nem kell az IT-ra várni ha fel akarnak installálni egy újabb packaget, az IT security pedig megnyugodhat, mert a felhasználók korlátlan jogosultságai a konténerek határáig terjednek. A felhasználók az eredményeket könnyedén tudják http linken keresztül publikálni és megosztani munkatársaikkal. Az eszköz kisebb hibái ellenére igazán jó és mind a felhasználók, mind az IT (azon belül is főleg a security) szereti. Legnagyobb hátránya, hogy fizetős: listaáron $50e 10 fehasználnálóra, évente. Ja! …és kell hozzá Cloudera EDH cluster, de legalább egy Data Engineering Hub. Részletesebben a termékről itt olvashattok.

A legújabb Cloudera verzióban immáron az 1.4-es CDSW verziót köszönthetjük. Hogy ez miben jobb, mint elődje? A modellek verziókezelésében és a deploymentben. A modellek futtatásokat egyszerűen össze lehet hasonlítani, valamint a kiválasztott modellt néhány gombnyomással ki lehet publikálni webservice-ként, hogy az alkalmazások REST API-n meg tudják hívni. Mi kell ennél több egy data scientistnek!?!

Read More